Slow? Not necessarily.
The main issue with that much memory is the data routing and the physical locality of the memory. Assuming you (somehow) could shrink down the distance from the cache to the registers and could have a wide enough data line/request lines you can have data from such a cache in ~4 cycles (assuming L1 and a hit).
What slows down memory for L2 is the wider address space and slower residence checks. L3 gets a bit slower because of even wider address spaces but also it has to deal with concurrency issues since it's shared among cores. It also ends up being slower because it physically has to be further away from the cores due to it's size.
If you ever look at a CPU die, you'll see that L1 caches are generally tiny and embedded right into the center of the processor. L2 tends to be bolted onto the sides of the physical cores. And L3 tends to be the largest amount of silicon real estate on a CPU package. This is all what contributes to the increasing fetch performance for each layer along with the fact that you have to check the closest layers first (An L3 hit, for example, means that the CPU checked L1 and L2 and failed at both which takes time. So L3 access will always be at least the L1 + L2 times).
Andor is a documentary about radicalization, resistance movements, and fascism set in the Star wars universe. It is VERY true to life and based on real revolutions.
It did an excellent job showcasing real politics and social dynamics. Tons of characters and they all had depth.
The first season is very good, the second season is, IMO, some of the best political drama ever produced. It's also highly entertaining.