The difference between an orbit that lasts 5 years and one that lasts a hundred is approximately 100-200km, the limit is quite sharp and actually quite tricky to get exactly right. That will cost you about a millisecond or two in latency tops. It is more likely that SpaceX is required to adhere to rules made by the FCC/FAA.
lte678
Feeling pretty called out, ngl
Well, the article refers to both :)
I think you'd be right about the "number of diagnoses" statement in the title, but I think the discussion is about the deaths due to cancer, which have also increased and would not have as strong of a correlation for the reasons others mentioned
This reads like AI generated crap. And considering the thumbnail is also AI-geberated art, it doesn't seem unlikely
Why dont people just keep their hand-written parts? The AI portions add next to nothing.
From briefly having worked on a project where this was a relevant issue, and I had to throw good people of foreign nationality off the team due to higher up NASA decisions: ITAR also becomes relevant when you want to access data and hardware that is ITAR regulated for use in your mission. This is the case for all space missions -- even for SpaceX, who likes to do things in-house -- since the advanced electronics, alloys, etc. will come from elsewhere and fall under regulation.
I don't know a single person who consumes milk because they think they require it. They just like the taste of dairy products.
The subsidization is an issue imo, but I don't think people are as brainwashed regarding milk as you assume.
It should be fine for normal use cases when used with error correcting codes without any active scrubbing.
According error rates for ECC RAM (which should be at least by an order of magnitude comparable) of 1 bit error per gigabyte of RAM per 1.8 hours^1^, we would assume ~5000 errors in a year. The average likelyhood of hitting an already affected byte is approx. (5000/2)/1e9=2e-6. So that probability * 5000 errors is about a 1.2 percent chance that two errors occur in one byte after a year. It grows exponentially once you start going a past a year. But in total, I would say that standard error correcting codes should be sufficient to catch all errors, even if in hibernation for a whole year.
TMR (so the tripilicate method) wouldn't be super suitable for this kind of application since it is a bit overkill in terms of redundancy. Just from an information theory perspective, you should only have enough parity suitable for the amount of corruption you are expecting (in this case, not a lot, maybe a handful of bits after a year or two). TMR is optimal for when you are expecting the whole result to be wrong or right, not just corrupted. ECC and periodic scrubbing should be suitable for this. That is what is done by space-grade processors and RAM.
The gold around satellites are actually very thin layers of mylar, aluminum foil and kapton (a type of golden, transparent plastic) which are used to keep heat inside the satellite inside, and heat outside, outside (See Multi-Layer Insulation). Radiation shielding usually comes from the aluminum structural elements of the spacecraft, or is close to the electronics so you do not waste too much mass on shielding material. Basically, shielding efficacy is most determined by its thickness, so it quickly becomes quite heavy.
Indeed, because those two things were only exemplary, meaning they would be indicative of your system having a bottleneck in almost all types workloads. Supported by the generally higher perforance in 64-bit mode.
Clearly you can address more bytes than your data bus width. But then why all the "hacks" on 32-bit architectures? Like the 36-bit address bus via memory mapping on SPARCv8 instead of using paired index registers ( or ARMv7 width LPAE). From a perfomance perspective using an address width that is not the native register width/ internal data bus width is an issue. For a significant subset of operations multiple instructions are required instead of one.
Also is your comment about turing completeness to be taken seriously? We are talking about performance and practicality. Go ahead and crunch on some 64-bit floats using purely 8-bit arithmetic operations (or even using vector registers). Of course you can, but the point is that a suitable word size is more effective for certain computational tasks. For operations that are done frequently, they should ideally be done at native data-bus width. Vectored operations will also cost performance.
Who wouldn't? They are doing some of the most advanced rocket science on the planet. Of course, trusting corporations statements and research is an entire topic of it's own. Taking Elon Musk seriously on the other hand...