this post was submitted on 27 Dec 2024
370 points (97.2% liked)
Technology
72137 readers
2376 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Stop depending on these proprietary LLMs. Go to !localllama@sh.itjust.works.
There are open-source LLMs you can run on your own computer if you have a powerful GPU. Models like OLMo and Falcon are made by true non-profits and universities, and they reach GPT-3.5 level of capability.
There are also open-weight models that you can run locally and fine-tune to your liking (although these don’t have open-source training data or code). The best of these (Alibaba’s Qwen, Meta’s llama, Mistral, Deepseek, etc.) match and sometimes exceed GPT 4o capabilities.
Interesting. So they mix the requests between all DDG users before sending them to “underlying model providers”. The providers like OAI and Anthropic will likely log the requests, but mixing is still a big step forward. My question is what do they do with the open-weight models? Do they also use some external inference provider that may log the requests? Or does DDG control the inference process?
Okay that sounds like the best one could get without self-hosting. Shame they don’t have the latest open-weight models, but I’ll try it out nonetheless.
The issue with that method, as you've noted, is that it prevents people with less powerful computers from running local LLMs. There are a few models that would be able to run on an underpowered machine, such as TinyLlama; but most users want a model that can do a plethora of tasks efficiently like ChatGPT can, I daresay. For people who have such hardware limitations, I believe the only option is relying on models that can be accessed online.
For that, I would recommend Mistral's Mixtral models (https://chat.mistral.ai/) and the surfeit of models available on Poe AI's platform (https://poe.com/). Particularly, I use Poe for interacting with the surprising diversity of Llama models they have available on the website.
What defines powerful? What if you don't have the necessary hardware?
You can check Hugging Face's website for specific requirements. I will warn you that lot of home machines don't fit the minimum requirements for a lot of models available there. There is TinyLlama and it can run on most underpowered machines, but its functionalities are very limited and it would lack a lot as an everyday AI Chatbot. You can check my other comment too for other options.
you can do cpu inference too! if you have enough ram to load GGUF formats :)